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ABSTRACT

The large amplitude vibrations of thin elastic plates and shallow

shells having various boundary conditions and subjected to random exci-

tation are investigated by using various approximate techniques.

The random vibrations of rectangular plates and circular plates

subjected to white random excitation are simulated numerically by two

different methods. The first method is that the governing equations

are reduced to a single-degree-of-freedom dynamical system and the

reduced equation is then integrated numerically by the Runge6Kutta

method employing the simulated approximate white noise as an input.

The second method consists in integrating the equation of motion and

the compatibility equation numerically by a finite-difference method

employing the simulated approximate white noise as an input. To compare

the results obtained by the simulation methods with those by other methods,

the single-degree-of-freedom system equation is solved exactly using the

Fokker-Planck equation, and solved approximately by the equivalent lineari-

zation technique. Also presented is the response analyses of shallow shells

to white noise by (1) numerical simulation using the single-degree-of-

freedom equation and (2) the Fokker-Planck equation. It has been shown

that the solutions by the numerical simulation are close to those obtained

by the equivalent linearization technique and the Fokker-Planck approach

while the second numerical simulation gives rather poor solutions.
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I
INTRODUCTION

In many physical problem areas there are situations where a mechanical

system is excited by a random type load and the response of the system

displays a random trend. Since the response process is not deterministic,

the response analysis must be treated statistically.

During the last two decades much research effort in the area of vibrations

has been devoted to the investigation of the structural response to random

excitation. Motivation for such research has arisen due to the development

of large jet engines and rocket motors which produce random pressure fields

of high intensity. Since the level of random excitation generated by jet

aircraft and missiles provides a severe environment with respect to fatigue

failure of structures, the investigation of the response of structures to

random excitation plays an important role in the fields of aircraft and

missile design.

The works of Crandall [1,2], Bolotin [3], Crandall and Mark [4], and

Lin [5], contain various topics in random vibration analysis. So far the

literature in the area of random vibration analysis. So far the literature

in the area of random vibration has been surveyed by Crandall [6], Smith

[7], Bolotin [8] and Vorovich [9]. Therefore in the present Chapter only

random vibration of thin elastic plates and shallow shells will be reviewed

briefly.

Analysis of the response of a linear elastic structure with known normal

modes to random excitation of a given power spectrum have been carried out

by many investigators [10 through 13]. Usually the input random load is

assumed to be stationary, ergodic, Gaussian with zero mean value. For such
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a case for a linear system it is possible to relate the statistical des-

cription of the output to that of the input. Hence, the mean-square

response can be evaluated under the assumption of a stationary Gaussian

input. However, the results of such analysis are valid only for small

lateral displacements. For moderately large displacements it is neces-

sary to take the effects of nonlinearities into account.

The motion of geometrically nonlinear elastic thin plates and shallow

shells is described by a system of two coupled nonlinear partial differen-

tial equations in terms of the lateral displacement w and the stress

function F, the so-called dynamic analog of the von Karman equations. The

load is again considered to be a stationary Gaussian random process with

zero mean value. Unfortunately, no exact solution for this problem has

been found. Only approximate solutions are possible. One approximate

solution is to reduce the partial differential equations to a system of

ordinary differential equations for the generalized coordinates and to

obtain an approximate solution by employing techniques used in nonlinear

mechanics. To do this, assuming that the lateral displacement w is

expressed as

N
w = Z fi(t)Ti(x,y) (1-1)

i=l

where fi(t) are generalized coordinates and Ti(x,y) is the coordinate

function representing the deflected shape of the structure, and using

approximation technique (for example Galerkin's method) the problem is

reduced to a system of N dynamical equations with respect to fi(t), i.e.,

d2f i(t) dfi (t)
dt + c dt + gi(fl,f 2 ,... ,fn ) : Qi(t) (1-2)

i=1,2, ... , N
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where c = generalized damping term

gi = generalized nonlinear stiffness term

Qi = generalized random forcing function

An alternative form of the governing equations for fi(t) derived by

mean of the Lagrangian equation takes the form

d2fi(t) dfi(t) + U Q(t) (1-3)

dt2  + c _dt f 1
i = 1, , . ,

where U is the potential energy of the system.

Only under the restriction that the generalized random forcing function

Qi(t) is stationary, Gaussian, white noise or filtered white noise, can

eqs. (1-2) or (1-3) be solved exactly in terms of the joint probability

density using the Markov process and the associated Fokker-Planck equa-

tion [14]. This approach was first applied to the case of a nonlinear

system by Andronov et al [15]. Herbert [16] investigated the multi-

mode response of beams and plates to white noise excitation using this

approach and showed that the probability density function of the model

amplitude is non-Gaussian and statistically dependent. Dimentberg [23]

applied the approach to the curved panel problem taking one term of

the series for normal deflection in eq. (1-1) and studied the fatigue

damage.

If the random forcing is not assumed to be white noise, only an

approximate solution to eq.(l-2) or (1-3) is possible. One approximate

technique for this type of equation is the equivalent linearization

technique which was originated by Krylov-Bogoliubov [17] in determinis-

tic theory and was applied to problems of random vibrations by Booton

[18] and Caughey [19]. Lin [20] investigated the single-mode response

of a flat, plate undergoing moderately large deflections subject to

stationary Gaussian excitation whose power spectrum is relatively flat.
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Another technique to obtain an approximate solution to eq.(l-2)

is the perturbation method. This technique was first introduced to

random vibration problems by Crandall [21]. This approach can be

applied only to systems with very small nonlinearities.

Besides the above mentioned approximate approach, another method

to estimate the response of a nonlinear elastic structure to random

excitation is a numerical simulation technique which has been exten-

sively used in the investigation of structural response due to earth-

quakes. This technique is to digitally simulate a physically realiza-

ble random load and to integrate the equation of motion numerically

by employing the simulated random load as a forcing function. Then

we compute the desired statistical properties of the response. Belz

[22] used this technique to investigate the problem of a beam subjected

to a concentrated random driving force. However, this method is time

consuming if the structural model is complex. Instead of solving the

original partial differential equation, eq.(l-2) may be integrated

numerically.

In the present study, the large amplitude vibrations of plates

and shallow shells having various boundary conditions and subjected

to white random excitation will be investigated by using various

approximate methods. Before going on to the analyses of the response

to random excitation, an investigation of the structural response to a

deterministic load will be made as a preliminary study in Chapter II.

In Chapter III, a Gaussian stationary white random process is

digitally simulated.

In the second section of Chapter IV, the random vibrations of

rectangular plates and circular plates subject to white noise are

simulated numerically. Two different simulations are presented:
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(1) the governing equations are reduced to a single-degree-of-

freedom dynamical system by taking one term of the series representing

the normal deflection in eq.(l-l) and the equation corresponding to

the case of N=l in eq. (1-2) is then integrated numerically by the

Runge-Kutta method employing the simulated white noise as an input.

(2) the equation is integrated numerically by a finite-difference

method employing the simulated white noise as an input. To compare

the results obtained by the simulation method with those found by

other methods, the single-degree-of freedom system equation is solved

exactly using the Fokker-Planck equation. Also the approximate solu-

tions obtained by the equivalent linearization technique are presented.

In the third section of Chapter IV, the response analysis of shallow

shells to white noise is carried out by (1) numerical simulation using

the single-degree-of-freedom system equation and (2) the Fokker-Planck

equation.
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II

RESPONSE OF THIN ELASTIC PLATES AND

SHALLOW SHELLS TO STEP LOAD

In this Chapter, the response analysis of flat rectangular plates,

flat circular plates, aribtrary shallow shells with rectangular boun-

daries and shallow spherical shells with a circular boundary to a uni-

formly distributed step load will be discussed. Nonlinear partial

differential equations governing the finite amplitude deflections of

plates and shallow shells are approximated by the finite-difference

equations by use of the Crank-Nicolson finite-difference scheme [24]

and these difference equations are then solved numerically using a CDC

3600 digital computer. The computer program for this analysis can be used

for investigation of response to an arbitrary input forcing function if

the input forcing function is digitally simulated. In Chapter IV the

computer program written in this study will be used for digital simulation

of random vibrations of plates. The purpose of the study in the present

Chapter is that before simulating random vibrations we determine the

numerical stability of the solution and the accuracy of the solution by

investigating the response to a step load. Since the steady state response

of the damped system to step load must agree with that under static load,

we can check the computer program and the accuracy of the approximate solu-

tions by comparing the values obtained here with existing results for the

static load.

2.1 Rectangular Plates and Shallow Shells of Rectangular Contour

2.1.1 Analysis
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Governing Equations

Consider a thin, elastic, isotropic shallow shell rectangular in plan

with double curvatures and of constant thickness h, Young's modulus E,

and Poisson's ratio v. The origin o of the curvilinear coordinates x-y-z

is chosen at a point of the middle surface corresponding to one of the

corners of the shell. (See Figure 2-1) Let the oz axis extend along

the normal to the middle surface toward the center of curvature. The ox

and oy axes are drawn parallel to the lines of principal curvature of the

shell. a and b denote the dimensions of the shell along the ox and oy

axes. Also kx and ky are the curvatures of the shell which remain constant

along the ox and the oy axes, respectively. Let w be the displacement

of a point in the middle surface along the oz axis.

The differential equations governing the finite amplitude vibrations

of such a shell are [25]

pha2w + c *Pha + DV4W a2 (kx + 3 2W*

2
* 

2 * a2 F* a2w* + q* (2-1)+ h-r(k + -=9) 2 - - +qax-y" y - axay xy

2* 2* 2* 2*

V4F = E[(- )2 x - " kx *7 k 2 (2-2)

where D=Eh 3/12(l-V 2) is the flexural rigidity of the shell, F is the Airy
*

stress function, p is mass density of the material, c is the damping co-

efficient (assumed to be constant), q is the lateral load and t denotes

time.

Membrane stresses ax, Oy and Txy in the middle surface are given by
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a2F*

Ux Dy2

a 2F*

y Dx 2  (2-3)

F*

xy - xDy

The strains in the middle surface are expressed in terms of F as
1 * *

x= E( y 2  2)

2 2 F* (2-4)* = I_fBF

* 2(1+,v) D
2F

'Yxy E xDY

Considering u and v which are the displacements in the middle surface

in the x and y directions, respectively, the strains are expressed in

terms of u , v and w as

a* )2
u kxw 1

x x x +

- kyW +I( w (2-5

y y 2-)

* u v w w
Yxy- y+ + x

The bending moments are
* *

21 : D --- z y2 (2-6)
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2* 2*

: + BXw (2-6)
y + ') cont'd

Non-dimensional ized Equations

Let us introduce the following dimensionless parameters:

2

Ko = 12(l-) 
=y

ub

1 *

t(p_D)V v b=t v b-

phb

* k x

w=w  k2F -F

F q = q*b4 /Eh4

S = -h = a/b = aspect ratio

(2-7)

Using the above dimensionless parameters, the equation of motion (2-1) and

the compatibility equation (2-2) are now expressed by
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32W 4W ~ 4  K.2 a2w k
2w+ c w =_4w a w .4w Ko_(_ kI

(t c + 2 -) + o + -

a2 F'a2W 2 P 2F a2W
+ Ko-T{--fn k2) - 2Kn + KOq

(2-8)

a4F + 2 4 F + 4 F  @2w )2 a2W 2

34 g 2an2  an 4 D E2 aT2

32W , 2W

-K - - k 2- (2-9)

Boundary Conditions and Initial Conditions

In this study, shallow rectangular shells with the following two

boundary conditions are considered:

a) All four edges are simply supported and immovable constrained

against in-plane translation.

b) All four edges are clamped and immovably constrained.

Let us formulate each set of boundary conditions. For the simply supported

case, the deflection w along four edges must be zero and there is no bend-

ing moment along any edge. Thus, the analytical formulations of these

boundary conditions in dimensionless form are from eq.(2-6),
w 0an 2w + a2W

= and VT = 0 at n = 0 and n = l

w=2and a + 2W at E = 0 and = Xand -- + 0 n
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Since w=O along n=O and n=l @w must be zero. Also, al--

becomes zero along &=0 and &=X. The above conditions can therefore

be written as
2w-

w = 0 and @ -2  = 0 at 0 and n l

(2-10)

w= and @2w = 0 at = 0 and =

If the edges are also immovably constrained at the supports, the normal

strain in the middle surface parallel to the edge must be zero along the

edge. The boundary conditions are from eq.(2-4),

32F 92F
@-E2-T -= 0 at C= 0 and &=X

(2-11)

@2F 32F
-n2  T-- = 0 at n= 0 and n=l

One additional condition required is that the relative displacement of the

points on edges &=0 and &=X for any given value n is equal to zero.

U&X - uC 0 ; (2u) d& = 0 (2-12)
n=constant

From eqs.(2-4) and (2-5), we have

au a2F F 1 1 2 +kl7& =7 3&"  2 2, 3& Ty W

Substituting this expression into eq.(2-12) gives

an2  -" . -3- w] d (2-13)
0 n = const. n = const.
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In a similar fashion, we have

1 11

f 2 F 2 F d= [IN k2w])2 l (2-14)
= const. = const.

Next, consider the boundary conditions for clamped shells with

immovably edges. In this case the deflections along the boundary (re

zero and the plane tangent to the deflected middle surface does not rotate

at the edges.

Therefore, we have

w = 0 and ..w = 0  at n=0 and q = I3TI

(2-15)

w= and = 0 at =0 and C = X

The conditions (2-11), (2-13) and (2-14) must also be satisfied.

For initial conditions we assume the body to be at rest.

Then
3w

w = 0 and = 0 at T= 0 (2-16)

The transverse load applied to the shallow shell in this Chapter is

a uniformly distributed step function type load which is expressed by

q(C,n,T) = Q u (T) (2-17)

where

Q = amplitude of the load

u(T) = unit step function defined by

1 when T > 0 (2-18)

u(T) when T = 0

0 when T < 0
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The problem consists in determining the functions w and F which

satisfy eqs.(2-8) and (2-9) together with the prescribed boundary con-

ditions and initial conditions. Because of difficulty in solving these

simultaneous partial differential equations analytically, these equations

will be solved numerically by a finite-difference method. The idea behind

numerical integration of eq.(2-8) by the finite-difference method is the

following: If the deflection w in the middle surface is specified at a

certain time level Tk' the stress function F and the membrane stresses

are determined by the compatibility equation (2-9) and boundary conditions.

Given membrane stresses at time level Tks we seek the deflection w at the

next level Tk+ATwith load Q under the assumption that the membrane stresses

at each point remain constant in the time interval [Tk,(Tk+AT)]. By this

assumption, the equation of motion (2-8) is treated as a linear partial

differential equation in the time interval [Tk, (Tk+AT)].

Equation (2-8) is reduced to two lower order differential equations

by introducing the two variable W and V defined as follows:
2w 92w

W = 2 + 32W (2-19)

= w (2-20)

If we differentiate eq.(2-19) with respect to T and substitute eq.

(2-20), we have

T_=_+ ._ + T2V (2-21)

which is the first desired equation. Substituting eqs.(2-19) and (2-20)

into eq. (2-9) to get,
+ cV = - +2W+ K 2w 2w2w

DE,2 on2 ) 0 2 2,I2T(- + - 12

+ Ko((lkl + "2k2 + Q) (2-22)
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If we define the column matrix U as

U (W(2-23)

then, eqs.(2-21) and (2-22) can be written in matrix form as

10 U +0 0 1 o )2u 2U

+2 -' T + 2 T 1 2 2 W + 0l k I  + (3 k + Q

(2-24)

Formulation of the Finite-Difference Equation

If we restrict ourselves to the first mode type response of shells,

it is only necessary to consider one-quarter of the shell because of the

symmetry. Let us consider the rectangular network as shown in Figure 2-3

at time Tk. The grid dimensions in the and n directions and the time

increment are denoted by AE, An and AT, respectively. If one-quarter of

the shell is divided into (M-l)x(N-1) sub-divisions, the spacing dimen-

sions A and An are

X
2(M-1 )

An - (2-25)
2(N-I) ( /

Y A/IAn = X (r4 -1) (M -I)

Besides the interior points (M-l)x(N-1) and the boundary points (M+N-1),

fictitious points are introduced along the lines = - AC and n= - An. Let

us denote any variable Ti at a discrete point P i,i and at time level Tk to
k

be Ti,j" Hereafter, the subscript represents the position and the super-
1 ,d j

script denotes time level.
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We shall reduce eq.(2-24) to the finite-difference form using Crank-

Nicolson finite-difference scheme. The partial derivatives are approximated

by
(DU) =- k+l k,j)/ AT

, (Ui, - U

Di =+(Ui, -1,j + Ui, - Uilj)/4A

(a2U k+l k+1 + +l -U

-12 i,j = (Ui+l,j +2Ui,j Ui1  + U +I,j ,j

+ Ui_ ,j)/2(A ) 2  (2-26)

(U)i,j =(Ui, + Uit )/2

and (w)i ,j can be expressed in terms of wkj and Ui  as follows:

(w)i,j ( w,j + wi,j)/2
1l3 13

k (w+' - wk )/ATVI,Sj -- w i  " w i

From these two equations

Mw =kw + -(0 1) k (2-27)(i,j  I w ij  2 U i

Using eqs.(2-26) and (2-27), eq.(2-24) is approximately written as

01 AT + C~ /2) (Ui,j + U,j)=( 0)2--T)

10 +l 00k+l k -k+l
) ,j ili (+U =- _A- C2 (Ui,j+ i,j-I 2AT

(U ,j + -kl  2Ui ') + (U. j+l + Uk+1
1,j 1 i,-

- 2Uk+l) + 1 k + k - 2U + (Uk + k" U,j P- (i+l,j Ui-_ l, i , ) + (i,j+ +  i,j-1

k

- 2U )] + (0 o,)o0 i, uk+l + k+l - 2Uk+l
0 12(AT7)7- i+l,j Ui-l,j " ,j
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(2-28)

Ko2 k O) Koki cont'd

0 1 i,j+l - + ( 1 4(AI)2r2

x (U k+l , k+l , k+l + Uk+l + 0

i+l ,j+l  i-l ,j+l - U+l i- ,j-1 )

(2-28)

where k

A = Ko[ k + a2 k + Q + k+ w k
0 i,k + ik 2  +(An) 2 r 2 Wi+ i l j

k
k 2i.i k k k 2wk

) +i,j+l I j_1  1,j

+ k1jj( k -wk wk + kW
+ (iJ()2r i+l,j+l - Wi-l,j+l w il + Wi -)]

(2-29)

Transposing the quantities at time Tk+ l to the left hand side and those

at time Tk to the right hand side, eq. (2-28) is written as

[D1, k+l +,D k+l +.D k+l +.D k+l

[D9 ]Uji+l,j+l + [D8]Ui, + [D7] Ui+l,j-l + i,j+l

+ k+l + k+l + [D U k+l + [D k+l+ [05] Ui, j  + U [i,j_ i-l,j+l 2] Ui_l j

+ [Dl]  uk+l + k + 2- -1,k1- = [C9] i+l,j+l 8 i+l,j

9+ [C 8],+lU'jUk k kk

[C7] U+lj-l +  [ Ui +  4C51 i +  i,j-1

k k + [Cl k_ +

[C3 ] Ui- ,j+l [C2 ] Ui-lj Ui ,j-1 ATA

wr [(2-30)

where [Dm] and [Cm] (m:I,2.,'",9) are the square matrices defined by
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0 0

[Dg9]

0 4 (An) 2r

(2-31)

AT
0 - 2(An) 2r2

[D8]

AT 
K6al 

(An )2

2 (An) r z  2 (An) 2r 2

o 0

[D7 ] -

0 KoA 2(AT) 2

0 A

2(Ann)z

[D6] 
-

AT K O2(AT) 2

)2(An)2

1 ~ ~ A .. 3 (12)

[D5]

AT (+ 12 Kol (AT) 2  K A 2
(An) 2  r (An) 2 +2 K  )2  2

(Al2)(An)
2r2 (An)2 2
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0 AT

ED4 ] =

6T KOCY2 (6T)2

2(An) 2  (2-31)

cont'd

"o 0

ED3 ] =

K 0T 12 (ATT)
2

4(An) 2 r

0 - AT2'(An) 2 r 2

[D2 ] =

At Koa I (AT)2
2(An)Zr 2  -2(An)r 2

"oa

EDl] =

L2 r -4(An) 2r

0 At
2"(AA)2 r)

[C8] =

TAt 0
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[C5] =

Ar A2

AT2

[C4 ] = (2-32)

-AT0

[C6] = [C8]

[C2] = [C8 ]

[C9], [C7], [C3] and [Cl] are null matrices.

The compatibility equation (2-9) at time Tk and at interior point Pi,j

(3 <i< M+l, 3<j. N+l) has the following finite-difference approximation:

i ,j r i+l 9j+l+i_l,j+l+i-l,j-1+i+l,j-1 )

+ .r2Fi+2 ,j+r2 Fi,j+2 r2Fi-2,j +rFi,j-2-4(1 r7)Fi+l ,j

-4(1+r2)i ,j+1-4(1+ r2)Fi_l ,j-4(r2+ )i,_l

S i+ ,j+-Wi-l ,j+l i- ,j-l-Wi+l ,j-l)

"(w i+l,jtwi-I,j-2wi1,j ) (wi ,j+l+wi,j_1-2wi,j )
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(2-33)
cont'd

-k1 (w i,j+l+wij-- 2wij) (An) 2  k 2(Wi+l,j-2wi,j) (A) 2

Now let us formulate the boundary conditions for the simply supported

shells. For the point P i,2 and P2,m on the boundary, eqs. (2-10) and (2-11)

are written in the finite difference form as

wi,2 = 0 and wi ,3 =-wi,l 2 < i < M+l at n=O

(2-34)

w2,m = 0 and w3 , m =-Wl 1 m 2 <_m < N+I at =0

r 2 (Fi ,3+Fi 1 -2F ,2 )-v(Fi+ 1 ,2+Fi 1 ,2-2Fi ,2 ) =0

2 < i < M+l at n=0

(F3,m +Flm -2F 2,m) -vr 2 (F2,m+l + F2,m-1 - 2F,) = 0

2<m< 1+l at =0 (2-35)

The integrals in eqs. (2-13) and (2-14) are approximated by the trapezoidal

rule as follows. In the c direction, keeping n constant, eq.(2-13) is

approximately expressed by

M- {2Fi,j + (a2F -  2F)i+I,j

i21rELlw)2 kl  + rl(lw,2 k 1

i=.Z7 2 ' -2w]i ,j "X723E - -wi+l ,j

3 < j < N+l (2-36)

Similarly, in the n direction, eq. (2-14) is expre.ced by

N-1 ( 2F _ 2F)  + ( 2F a2F

j=2 - a + ( -
j=2 j
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N-l {lkaw)2 w + (w2 -k 2w. 1
1 k ,j 2a i,j+l 1 ,j+l

j=2

3 <_ i < M+l (2-37)

Equations (2-36) and (2-37) are expressed by the following finite-difference

equations:

M- 2

M-2 {r2(Fi,j+l + Fi,j_1 - 2Fi,j) - (Fi+l,j + Fi_l, j

- 2Fi , ) + r (Fi+ l ,j+ l  + Fi+l,-I - 2Fi+l,j)

M-2
-v(F , + Fi, j  - 2F+,1  [9(w.+1,j

i=2

-)2 (An) 2kw + l(twi+2, . 2Wi-l ,j 1k ,ji 4 ,j ,ji

(An)2 k lwi+l,j] 3 < j_ N+I (2-38)

N-2 1
. rl-=r (Fi+l,j + Fi_l, j  - 2F i,j ) - AF i,j+ 1 + F i,j+ I )

j=2{

-F + (F - 2F1 ~ F j1+~,1

j2F,) + r + (Fil,j+l i-I,j+l - 2F i,j+l)

" V(Fi,j+2 + Fi j - 2Fi,j+l

N-2

=2 .Lw 1'+ - )2  _ (An) 2k2 w
j =2 [ ij+l 2ij-1 2 j

+ I(wi,j+2 - wi *)2 _ (An)2k2wi,j+l ]

3 < i < M+l (2-39)
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For the clamped shells, the finite-difference forms of eq.(2-15) are

wi, 2 = 0 and wi, 3 = wi,1  2< i <M+l at n = 0 (2-40)

w2, j = 0 and w3,j  = W1 ,j  2 J <N+l at C = 0 (2-41)

Equations (2-38) and (2-39) must hold for this case, too.

Procedure for Solving w i and Fi j

Together with eqs.(2-33), (2-38) and (2-39), the following simultaneous

equations for the stress function F at the interior points and the boundary

points are formulated:

[A] {F} = {G} (2-42)

where [A] is the (M+N+MN-l)x(M+N+MN-1) square matrix whose elements are

constants, {F} is the column matrix of F i,j and {G} is also the column matrix

whose elements are functionsof W i,j . In the above formulation, the stress

function at the corner F2, 2 has been assumed to be zero following Wang's

assumption [26]. From eq.(2-42), if the deflection w i, at each discrete point

is given, then the stress function F i, and the membrane stresses at each

point can be determined.

The initial conditions (2-26) now take the form

Wi = 0 and U =0 (2-43)

Equation (2-30) together with the boundary conditions (2-34) or (2-41) may

be solved for Ui, j using a digital computer by the following procedure.

Step.l Given the initial conditions (2-43), eq. (2-42) is solved for F.
1 as

from which the membrane stresses at each point P i1 are determined as
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jli : (Fi J++Fi,J-l-2Fi,J)/An)2 (
.~ 1 +F. ~(2-44)

'2ij = (Fi+l j+F i-l j2F.'i,Vr2(An) 2

Tl2i,j = (Fi+ J+l-F ,J+l'Fi+l J-I (2-45)

+Fi. l ,j_l )/4(An)2 r

Step.2 Substituting these initial deflections, the membrane stresses and Q

into eqs.(2-29), (2-31) and (2-32), eq.(2-30) represents the simul-

taneous equations for U Solving for Ui w is then found

from the relation

wi , + AT (0 IU, (2-46)

Step.3 Substitute w1  into the right hand side of eq. (2-42) and solveStep3 Sustitte i ,j ..

for F , j . Calculate the membrane stresses by eq.(2-43). Return

to step 2 and continue the procedure.

2.1.2 Examples

As an example of the present analysis, the steady state response of

the following structures to various magnitudes of step load were determined.

1. Simply Supported Rectangular Plate (Aspect ratio x=, 1.?5, 1.5

and 2.0)

2. Clamped Rectangular Plate (Aspect ratio X=l, 1.25, 1.5 and 2.0)

3 Si'mply Supported Double Curvature Shell (Aspect ratio x=l)

4. Clamped Double Curvature Shell (Aspect ratio X=l) As previously

mentioned, the supports do not permit in-plane displacement of the edges of

the structure. For a rectangular plate with aspect ratio X, the spacing dimension

A for fixing N:4 and M=5 was determined by (See Table 2-1)
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N-I

A& = XAnFWT

= X/8 (2-47)

If we choose M and At such that

M = [l+ x (N-i)] (2-48)

AE :(2-49)

the solutions will be more accurate than those obtained by eq.(2-47). However

a much longer computing time is required. Therefore, the choice of At was made

using eq.(2-47) by sacrificing some accuracy of the solutions.

Since there is no criterion for determining the time increment AT to

bring about numerical stability and convergence of the solution, AT was

determined such that further deceasing AT did not apprecially affect the

response. For the following values of AT, the numerical solutions were

apparently convergent:

Simply supported square plate AT<5xlO- 3

Clamped square plate AT<5xl0 -3

Simply supported rectangular AT<7xl0 - 3

plate with aspect ratio x=2

Clamped rectangular plate AT<7xl0 -3

with aspect ratio x=2

For all cases, it was found that AT=0.002 is sufficiently small. Through the

present Chapter AT=0.002 was used.

In Table 2-2 the results are listed together with Kornishin's static solutions

[27] and the difference e between the results obtained in the present study and

his results are also listed for comparison. It can be seen that even if the

interior points are 9(N=4 and M=4) or 12 (N=4 and M=5) in number, reasonably

good results were obtained. In Figure 2-5, a typical deflection response curve

for the case of a clamped square plate is shown.
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TABLE 2-1

CHOICE OF r, M AND N

A M N

1 4 41

1.25 5 4 15/16

1.5 5 4 9/8

2 5 4 3/2
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2.2 Circular Plates and Shallow Spherical Shells

2.2.1 Analysis

Governing Equations

The finite amplitude vibration of a thin elastic, shallow spherical

shell of thickness h, Young's modulus E, Poisson's ratio v, constant curva-

ture k and base radius R after assuming axisymmetry is governed by the

following two simultaneous partial differential equations [25] in the polar

coordinates system shown in Fig. 2-2.
*** *32

ph32W+ phc*3w + Dv4w = h r3 + k*)atz +t T5hc 3

32F

+ h =(- r--. + k*) + q (r,t) (2-50)

vF* = -E a r3r _ k E(-TW* + r3r (2-51)

= _E -

3T3 
-r-7(2-51

where

v4 34 33 32 a

3r4  r3 r 23r 2  r33r

w = the normal displacment of a point in the middle surface

c = viscous damping

F = stress function
q (r,t) = lateral load

D = Eh3/12(l-v 2)

The membrane stresses in the middle surface are expressed by
DF

* -
r =r3r

(2-52)
a 32F

0 ar2
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The radial strain Er and the circumferential strain e0 are
* **1w

9u k *w + W-w- --
r arT r

(2-53)

u r kw

where u is the radial displacement of a point in the middle surface of the

shell.

The membrane stresses are also expressed in terms of e r and ce as

* E
* = E(er + VE )°r 1- 2- r

(2-54)

Eo 7 -- (Eo +VEr
8 V 12fe r

From eqs. (2-52), (2-53) and (2-54)

2 * *

U* * 1 2 F Fr- r- - -r
r (2-55)

* 2 *

a *w* 1 aw 2 1 (F a )3 r k' T - +V

Bending moments are given by

M* D * + V 9-
r @r2  r ar

(2-56)

M* 2 W

M = 7 D( + -+ r2

In the present study, the following two edge conditions will be considered.

(a) Simply supported immovable edge

(b) Clamped immovable edge

where again the edges cannot approach one another. Let us formulate these

boundary conditions analytically.
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(a) Simply supported shallow spherical shell with immovable edge

Since deflections w and the bending moment Mr are zero at the edge,

from eq.(2-56) we have

*92* w*

w =0 and - + ra =0 at r = R (2-57)
@r r

Also the radial displacement u at the edge is zero.

From eq. (2-55),
2 * *

Ui IaF aF
U-kw + -btF _ F =Oatr =R

But, since w = 0 at r=R,
.2F DF
rF - Vr- = 0 at r = R (2-58)

Considering eq.(2-52), an additional restriction for F is that at the center

of the shell, the membrane stress ar must be finite. Thus,

aF 0 at r = 0 (2-59)
r

Since u = 0 at r=O and r=R, integration of the second equation of (2-55) from

r=O to r=R leads to

J w - - + dr = 0 (2-60)

which will be used for the formulation of the finite-difference equation.

(b) Clamped shallow spherical shell with immovable edge

The deflection and the slope at the edge are zero.

Thus *ww* = 0 and aw 0 at r=R 
(2-61)ar

Conditions (2-58), (2-59) and (2-60) must hold for this case too.

For convenience, let us nondimensionalize all equations by introducing

the following dimensionless parameters:
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* *R4 E4

w = w /h q = q R /Eh

s = r/R k = k*R2/h

* *R2 E2

F = F/Eh2  as r/Eh

41/2 *

T = t(D/phR 4) 1/ = R/Eh2

*41 /22

c = c phR4/D) Ko= 12(1-v 2)
(2-62)

Using eq.(2-62), eqs.(2-50) and (2-51) become
a2W aw 4 ra2Fl aw

+ c-Lw + V 4w = K o[a2(k + 'w

+--aF a2Ws"+ -r + q] (2-63)

V4F a2w aw k_ a2w aw (2-64)F s- sas T s- s a

respectively. The boundary conditions (2-57) and (2-58) for simply suppor ed

edges are now expressed by

a2w v aw_0atsl2-5
w = 0 and W + L aws=0 at s=l

a2F aF = 0 at s=l (2-66)
7 s-7vs"as

respectively. Conditions (2-59) becomes

aF = 0 at s=O (2-67)
as

Equation (2-60) is transformed to

aF a2F I Wjo v[2)ds= 0  - kw]ds (2-68)Th ( bS d s fr t

The boundary conditions for the clamped edge (2-61) become
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aw

w=0and 7 = 0 at s=l (2-69)

The initial conditions imposed here are
aw

and -T = 0 at T=O (2-70)

The problem for a simply supported edge consists in finding w and F from

eqs.(2-63) and (2-64) subject to the boundary conditions (2-65) through (2-68)

and initial conditions (2-70). For a clamped edge the boundary conditions are

given by eq. (2-69) instead of eq.(2-65). The method of solution employed

here is the same as that used for the rectangular shell.

To reduce the order of the derivatives in eq. (2-63), we introduce two

new variable W and V defined by
W a2wW=-

(2-71)
V -aw

DT
Eliminating w from above two equations, we have

aw a2v (2-72)

Using W and V, eq.(2-63) is expressed by

_ a2w 2 aw w + 1 aw)V c 7 s as 7- 2  s as

+ K [as(W + 1) + cy(w + k) + q] (2-73)o s sas

If we use the vector U defined by

U (W (2-73)

eqs.(2-72) and (2-73) are expressed in the following matrix form:

0~a 2 U I l a 0 0DUL 1i 0L clUj 0 Jav~ L2 0Jas
+ U +

+ ([ s + 12) 0 Koq+(Koa- 1 aw K

S ae - -2 ) s + sa(s+()k
(2-75)
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Formulation of the Finite-Difference Equations

Consider a system of one dimensional equally spaced discrete points

pk at time T as shown in Figure 2-4. Here the subscript i represents

the spatial position and the superscript k denotes the time level. Be-

cause of the symmetry we consider the motion of only a radius of the

shell. Let us divide the radius 1 into N intervals and call the point

at the center of the shell Pk. One fictitious point Pk+l outside the

edge is introduced. The spacing dimension As is 1/N.

Let us write the finite-difference analog for eq.(2-75) using

the Crank-Nicolson finite-difference scheme which was introduced in

the previous section. Since we have a singularity at the center s=O,

we must consider the case for s=O spearately.

At points P. (O<i<N), eq.(2-75) may be approximated by the following

finite-difference expression:

1, k+l k+l+k0 1 Ui+ "U+i _ +U i -U i

-10s 24

4As1 0

4o k k k k+l k+l

q+Kok(ok.+ak.) + (Ko 1 eiil A w ("i5+l"i-+l) J (2-76)

Here it has been assumed that the membrane stresses remain constant in the

time interval [Tk(Ok+AT3 .. Rewriting eq. (2-76), we have
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[B3]Ui
+ + [B2][' + Ul

:[A3]Uk 1 + [A]U [Ak + ]Ui 1 +F1 (2-77)

where [B.] and [A.] (j=1,2,3) are square metrices defined by

0 --

[B3] AT (A 2 (1 k
2Ass 4Ass. s7 K0 ei)

EB2] (2-78)

-c (Ko ci+ 1 + I -A ,)

AT

02(As)

[BI] =

A1 -K a k-2'S' AS S i 
) -4Ass i  S i  Ko ei)

0 AT
2 (A s)

[A3] 1

2TAs'As S s-i

1 A-

[A 23 
TS ")2

IA] (Koosk+ 1 + 1 CA--T

i  2

AT

[A1 ] 
1

AT0
A-S TOS'
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andk is defined by
a w + -wi

KOAT [q+K(aki+k)] + AT( ki li I
The compatibility equation (2-64) at the point P. (l<i<N-l) may be

1 -

written in the finite-difference form

(Fi+ 2 -4F i+l +6F i- 4Fi 1 +F. 2)/(As)2 + (Fi+ 2-2Fi+l+2Fi_l

-Fi2)/si (AS)3- (Fi+ 1-2Fi+Fi_l)/(siAs) 2 + (Fi+l-Fi_l)

x(l/2Ass ) = - 2w i+w i_l )(wi+l-w i_ I)/ 2s i (AS )3

- k(wi+l-2w i +Wi)/(AS) 2 -k(wi+-wi_l)/2s i (AS)

(2-79)

At the point Pk J.e., the center of the shell, using L'Hospital's rule,

eq.(2-75) takes the form

2U + U =2U + Ko(s+U

DT 5 0 1

0 11 { o0 C, [1 0

KO (q+G s+0 e)A (2-80)

which has the following finite-difference analog:

2[B ]U kl + [B2IU 0k1 = 2[A ]Uk + [A ]Uk

+ 0 (2-81)

K [q+k(ak +Ck0 ] TIK ks k
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where

[B ] -

46

AT

8 AT 1

(A-. 2  2 J (2-82)

At s=O, the compatibility equation (2-64) can be expressed as (See APPENDIX),
8a4F - , 2w )2 _ __

3-- - a2  )2 - 2k 2W (2-83)
3 S as =5s

which reduces to

7(F2-4F,+3Fo) =- (wl-w O ) -k(wl-w O ) (As) 2  (2-84)

The boundary conditions (2-65) and (2-66) are expressed by

=0 and WN+l +WN-l +V WN+l N- = (2-85)
N (4s)2  S N  2As

FN+l +F N- 2FN -FN _ l(AS- - so FNA s  - (2-86)

respectively. The integral in eq.(2-68) is approximated by the trapezoidal

rule as

I1 2F +N-1 F aF D2F) + I,aF a2 F
s=1 sas )N

= .'{1(S)2 - kwo] N L2si kwi ] + kW
(2-87)

In finite-difference form, this becomes

FI+F 0  N-I F +i -F i-i F i++ i- -2F i

75- 2 siAS (As) 2

FN+l -FN- FN+l+FN_-2FN)
+ -,As (As) 2 /
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W -kw +1 . 8(As)'- kw)

+i1(WN+1-WN-l )
2

2 (As)? - kw,, (2-88)

The boundary conditions (2-69) for a clamped edge are expressed by

wn = 0 and wN+l = WN-1 (2-89)

Also, conditions (2-86) and (2-88) must be satisfied for clamped shells.

The initial conditions (2-70) have the form

w= 0 and V? = 0 i=0,l,...,N+l (2-90)

Procedure for solving for wi and Fi

Equations (2-79), (2-84) and (2-89) constitute the following simultaneous

equations for F.:

[K]IF} = {L} (2-91)

where [K] is an ([+l)x(N+l) matrix whose elements are function of As, and sit

{F} is a column matrix of Fi, and {L} is a column matrix whose elements are
k1

function of wi. If the deflections at every point are known, then the

stress function F at every point can be determined by solving eq.(2-91),

namely

{F} = [K] I {L} (2-92)

The procedure for solving for wi is essentially the same as that described

in the previous section (2-1-1):

Step 1. Substitute the initial conditions (2-90) into {L} of eq.(2-92) and

obtain F?. Then the membrane stresses at each point can be cal-

culated by
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F i+l -F i-I
asi 2siAS 1 < i < N (2-93)

F +I +F i- 1 -2Fi

e - (As) z

At the center of the shell s=0, using L'Hospital's rule

a =0  = 2(FI-F 0 )/(As)
2  (2-94)

S0 0

Step 2. Substitute a and a. into (2-78) and (2-82), and compute U?. Solve
1 1 6 11

eqs. (2-77) and (2-81) for Ui. The deflection wl can be obtained from

w I =w. + Ar (0 I)U
1 1 1

= + ATVl1 1i
1

Step 3. Substitute the new deflection w. into {L} of eq. (2-92) and compute
1

Fi. Repeat this procedure.

2.2.2 Examples

As an example, the computation of the deflection response was carried out

for the following cases.

1) Simply Supported Circular Plate

2) Clamped Circular Plate

3) Simply Supported Spherical Shell (k=l,2, and 3)

4) Clamped Spherical Shell (k-l,2, and 3)

where the edges cannot approach one another. The spacing AS was taken to be 0.2.

The time increment AT for numerical stability and convergence of the solution for

the given As=0.2 was found to be

AT<l_.0xI0 -2 for a simply supported edge

Ar<2.5xl0 -3 for a clamped edge

However, throughout this section the deflection response was calculated using

AT= 0.002. Typical deflection response curves for a clamped spherical shell

are shown in Fig.2-6. The steady state responses of the above cases in the presence

of heavy damping are listed in Table 2-3 together with Kornishin's static solutions.
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III

SIMULATION OF A STATIONARY GAUSSIAN WHITE NOISE

3.1 White Noise

White noise is a mathematical idealization of a stationary random

process in which the power spectral density is constant, G0 at all

frequencies. Since the autocorrelation function R(T) for white noise

is expressed by

R(T) = 27G 0(.) (3-1)

where 6(T) is the Dirac delta function, the process has an infinite

variance and is completely uncorrelated at different times.

3.2 Simulation of Approximate White Noise Processes

True white noise is physically impossible and cannot be simulated

because it requires an infinite mean square value. Therefore in this

section, approximate Gaussian white noise whose power spectral density is

constant over the range of frequencies of interest and falls to zero as

the frequency tends to infinity is generated. To do this, first a sequence

of independent random numbers Bk distributed uniformly in the interval

(0,1) is generated by a power residue method [29] on the CDC 3600

digital computer. Then a white sequence of Gaussian numbers vk with

mean zero and variance a is obtained through the transformations

1/2

vk = av(-2 loge Bk) cos27Bk+l
k odd (3-2)

1/2
vk+l = av(-2 loge Bk) sin 27TBk+l
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Construct a function p(t) consisting of a sequence of step functions having

constant time interval Ah, with the ordinates in the various intervals

being white numbers vk. The mathematical formulation of the function

p(t) is

p(t) = E vk {u[t - (k+l)Ah] - u(t - kAh)} (3-3)
k=-w

where u(t) is a unit step function defined by

1 t>O
u(t) = 1/2 t=O (3-4)

0 t<O

In this study, the process is assumed to be ergodic, stationary, and

Gaussian. Hence ensemble average may be replaced by time average.

The temporal mean value s and variance a become, respectively,

i1  T
lp i lim 7 fT p(t)dt

ST -(3-5)
N

=lim E vk = 0
N- 00 k=-N

The autocorrelation function of the random process p(t) is calculated from

1 .T
R(r) = lim 1 p(t)p(t+T)dt (3-7)

T-*co T -T
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which yields

R(T) = (3-8)

0 ITI Ah

The power spectral density function G(w) is the Fourier transform of

the autocorrelation function R(T). Since R(T) is an even function of

T, then we have

G(w) l . -WiT

= l_ J:R(T) COSWtdT

2 /
sin- 

(3-9)

For uth small, G(w) can be approximated by

G(w) [1 -- - (3-10)

Choosing Ah sufficiently small G(w) can be approximated by oah/r.
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IV

STATIONARY RESPONSE OF PLATES AND SHALLOW

SHELLS TO GAUSSIAN WHITE RANDOM EXCITATION

4.1 Introduction

In the present Chapter the response analysis of plates and shallow

shells to stationary Gaussian random excitation will be carried out

by various methods. All equations and nomenclatures used here are the

same as those described in Chapter II.

The random excitation q( ,n,T) or q(s,T) is assumed to be uniformly

distributed over the structure and applied normal to the middle surface

of the structure. Furthermore, the random excitation is also assumed to

be stationary, ergodic and Gaussian white noise with zero mean value, that is

q(t.n,T) or q(s,T) = Q(T)

E[Q(T)] = 0 (4-1)

E[Q(l)Q(T 2)]  = 2Go6(T1  - 2)

where G0 is constant, 6(T) is the Dirac delta function and E [ ] is the

expectation operator. The methods of solution are the following.

Method I. Numerical Simulation by the Runge-Kutta Method

The equation of motion and the compatibility equation are reduced

to a single-degree-of-freedom dynamical system. To do this we assume

the normal deflection w(E,n,T) or w(s,T) to be the product of the coordinate

function *(E,n) which satisfies the boundary conditions and is suitable

for representing the deflected shape of plates or shells and the generalized

coordinate f(T) such as
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W(E,n,T) = f(T)*(&,n)
(4-2)

w(s,T) = f(T)*(s)

Then we substitute eq. (4-2) into the compatibility equation and solve

for the stress function F in terms of f(T). Upon using Galerkin's

method [25], the equation of motion and compatibility equation yield

f+ 2 o i + W(f + f2 + yf3) Q() (4-3)
0 0

where is the fraction of critical damping., o , y and a are

constants. Note that for a flat plate a is zero.

The approximate white noise process p(T) is generated digitally

by following the method described in Chapter III, by use of eqs.

(3-2) and (3-3). The power spectral density is expressed approximately by

2

[ - ] (4-4)

If Ah is small and the damping of the system is small, G(w) is almost

flat near the frequency w 0 and p(T) can be considered to be white noise.

Therefore,

G(w) z a2 Ah/7 = GO  (4-5)

The magnitude of the power spectral density can be varied by changing

either fv or Ah. Equation (4-3) is now integrated numerically by the

Runge-Kutta method employing the p(T) from eq. (3-4) as an input Q(T).

In the present study, the integration time increment Ar and the basic

time increment Ah are chosen as

AT = Ah = l/lOw0 (4-6)
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Since the random process is assumed to be ergodic, the ensemble

average may be replaced by the temporal average. Therefore the mean,

mean-square, and the variance of the response f(T) are computed by

E[f] 1 T f f dr

N
k=O (4-7)

1 N 2
Ef N E

k=O

2 1 N 2 N 2
Of N fko N E'

k=O k=0

where a is the variance of f(T) and f is the response of f at time Tk.

2 2The mean-square, E[w ], and the variance, aw, of the central deflection

are found from eqs. (4-2) and (4-7) as

E[w 2 E[f 2] *2 (1/2x, 1/2)
(4-8)

2 2 *2 (1/2X, 1/2)

The averaging time T (or N) in eq. (4-7) must be determined such that

further increasing T does not affect E[f] or E[f 2] appreciably. Here T

is chosen to be 6600 Ah.

Method II. Numerical Simulation by the Finite-Difference Technique

Insteady of solving the reduced single-degree-of-freedom dynamical

equation (4-3), the equation of motion (2-8) and the compatibility equation

(2-9) are integrated numerically by the finite-difference method employing

the simulated white noise p(T) as an input. The integration time increment AT
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and the averaging time T are chosen to be the same as those used in method

I. The mean-square response of the deflection is then calculated by use

of eqs. (4-7) and (4-8).

Method III. Use of the Fokker-Planck Equation [14]

Since the input Q(Z) in eq. (4-3) is white noise, this equation can

be solved exactly by the Fokker-Planck approach. Writing yl = f and

Y2 = f, eq. (4-3) is equivalent to the following pair of first-order equations.

Yl Y2  (4-9)

= 2 2 +
2 =  oY2 wo(yl + yy1 ) +

The stationary Fokker-Planck equation associated with eq. (4-9) is

rG 2  a2 [2 2 2 3
y 2  {[2 Y2 + o°(yl + ay + yly)]} p = 0

(4-10)

where p is a joint probability density for yl and Y2. The solution for

P(YlI Y2) obtained by Caughey [14] is

P(YlI Y2) = p(f, ) 32

= cexp f- 2w °  + I af 3 +1f4 + o 2 (4-11)
Tra 2 f W

where C is a normalization factor defined by

C = I/[[j7 p(f,f)dfdf] (4-12)

Since f and f are statistically independent,

p(f,J) = p(f)p(f)
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where p(f) is expressed by

exp (-clf 2 - c2f
3 - c3f

4)

p(f) = 1 2 2f3 c3f4)df (4-13)
1exp (-clf -2 cf -3f d

where

cI = 1/(2o )
0

c2 = a/(Oa2 )2 fo (4-14)

c = y/(4o )
3 fo

CY2 = rGa 2 /(4;w 3
f 0 0 0

and y2 is the mean-square response of the linear system (8=y=O) correspondingfo
to eq. (4-3). The variance a of f is obtained by

2 = E[f2 (E[f]) 2 (4-15)of

T 00 f2p(f)df- [fp(f)df]

For plates, i.e., a=0 and E[f]=O, a can be expressed by a parabolic

Of

cylinder function DV(z) as [16,28]

2= E[f 2]

f
=T.,,f2P(f)df

"- f2exp(_cf 2 _ c3f4)df

= exp(-c 1f2 - c3 f4)df
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Introducing the change of variable f2 = g, we find:

g /2exp(-clg - c3g2)dg

00 exp(-clg - c3g2)dg

D 3 1(2c3. 

(4-16)
2(2 (2c3)

In the present study the integrals of eq. (4-15) are evaluated numerically.

Method IV. Use of the Equivalent Linearization Technique.

Let us assume that the nonlinear differential equation (4-3) is

linearized as

f + 2cwof +Woef = Q(T) (4-17)

where w2 is the equivalent linear stiffness. The error e caused by
oe

this linearization is the difference between eq. (4-3) and eq.(4-17), i.e.,
2 _2 22

e = (woe o- 2)f - Wo(2f2 + yf3) (4-18)

In order to determine w2 we choose w 2 so as to minimize the mean-squareoel oe

value of the error e. The mean-square of e is

24

E[e 2]  (Wo 2 W 2) 2E[f 2] + W4 2 E[f 4] + W4oy2 E[f 6

2(w W2 W [f3 +2w 4y E[f 5] 2w 2Y(Wo 2-Wo2)E[f4]
.(o e  0 0)0o0E[f30

Minimization of E[e 2] is achieved by requiring that

dE[e 2] = 0 (4-19)

d(w 
2 )
oe
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from which we have

2 2 E[f3+yE[f4 0)
oe o E[f 2

Since Q(T) is a stationary Gaussian random process with zero mean

value, the response of the linearized system is also assumed to be

stationary Gaussian if the nonlinearity of the system is small. Then,

E[f4] and E[f ] are evaluated as

E[f 4  = 3Ef21
(4-21)

E[f3] = 0

The mean-square response of the linearized system is found from

2oe 0 0

=-T 2 (4-22)
4w woe

Substituting eqs. (4-21) and (4-22) into eq. (4-20), we obtain

3y(E[f 2]2 + E[f2] - cf2 = 0 (4-23)

where a 2 is the mean-square response of the corresponding linear systemfo 2 b 2 Sovn o [ 2 ] foof eq. (4-3) and obtained by replacing w oe 2

eq. (4-23), we find

2  [(1 12 o 1/ 2

E[f : L + - 1] (4-24)
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Note that if is not zero, E[f 3] is not zero. However, the estimation

of E[f 3] from the linearized system leads to the conclusion that E[f
3]

is zero. Therefore, for the case of shells where a is non-zero, this

method will not give a good approximate solution.

4.2 Plates

The mean-square deflection response is evaluated by Method I

through IV for the following cases:

(a) Simply Supported Square Plate (=l)

(b) Simply Supported Rectangular Plate (0=2)

(c) Clamped Square Plate (x=l)

(d) Clamped Rectangular Plate (x=2)

(e) Simply Supported Circular Plate

(f) Clamped Circular Plate

It is assumed that the supports for all cases do not permit in-plane

displacement of the edges of the structure. The governing equations

and the boundary conditions are described in Chapter II.

We assume the following form for deflection w:

w = f(T)*(&,n) = f(T)sin--siniun for (a) and (b) (4-25)

w = f(TME)(n,) = f(T)sin2 rsin2 7n for (c) and (d) (4-26)

W = f(T)*(S) = f(T)(l-2ms 2+mlm2s4) for (e) (4-27)

w = f(T)*(s) = f(T)(l-2s2+s4 ) for (f) (4-28)

where ml = (3+v)/(5+v) and m2 = (1+v)/(3+v) All above assumed solutions

satisfy the boundary conditions for each case. By substituting w into the
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compatibility equation and solving for F, then using Galerkin's method,

we have the following final equation for each case:

f + 2C0f + 2(f + yf3) 3 AQ(t)
0 0

2 2
where t, 0y and a for each case are listed in Table 4-1. Once wos Y

and a .are determined, the mean-square response of the deflection can

be evaluated by methods I, III, and IV. The damping coefficient is

chosen as = 0.05 for each case. The mean-square response of the

central deflection versus spectral density G0 are shown in Figs. 4-1

through 4-6.

The results show that the mean-square response by methods I, III,

and IV are reasonably close to each other, however the results obtained

by method II deviate very much from those found by the other three

methods. This is due to the truncation error and the propagation error

involved in the process of numerical integration. (Case (b) was not

worked by method II.) Since the computation time required by method II

is great (for example for case (a), it took 46 minutes to get the single

point in Fig. 4-1.), the method II is not recommended. It is also to be

noted that the results obtained by the equivalent linearization technique

are smaller than those by the Fokker-Planck approach for all cases.

4.3 Shells

In this section, the variance of deflection of the following shallow

shells is evaluated by methods I and IV.

(g) Simply Supported Cylindrical Shells (k1=0 and k2=5, aspect

ratio X = 1.0). Here, w is assumed to take the form of

eq. (4-25).
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(h) Clamped Cylindrical Shells (kl=0 and k2=5)aspect ratio

x = 1.0). Here, w is assumed to take the form of eq. (4-26).

(i) Clamped Cylindrical Shells (kl=O and k2=5,aspect ratio x = 2.0).

Here, w is assumed to take the form of eq. (4-26).

(j) Simply Supported Spherical Shell (k=O.5). Here, w is assumed

to take the form of eq. (4.27).

(k) Clamped Spherical Shell (k=l.O). Here, w is assumed to take

the form of eq. (4-28).

Following the same procedure described in section 4.2, we have

f + 2Cowi + W (f + f2 + yf 3) = ce(r) (4-3)
00

where the constants w, , y and a for each case are listed in Table 4-1.

The variance a 2 of the central deflection versus power spectral densityw

Go for each case is plotted in Fig. 4-7 through 4-11. From these figures

it can be seen that the result obtained by the numerical simulation method

are in good agreement with the exact solution when 2 is small.
w
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TABLE 4-1

VALUES OF co , I AND x
0

1. Simply Supported Roc-tangular Shells (,e. (a)L and

(,x2+l) 2 Tr"/) +24 (l-v2) (k1+]C2): TT (u-64)/TT*( X+1)2

2

- +768(kt+2Vlk k2X+k 2 X" )/tTr 4

{-8(i-v2)[4(kl+k2 )/(X 2 +l)1+(kj+k 2X )/) ] -72[k 1

+ VX2 ()_ +k 2 )+k 2 x/ /(D

y 13T-4 [(1-( )(x+l)/2+( X+2.VX2+l)]/8,I/W >

(z192(1-V2 )/IT 2

2. Claped Rectangular Shells (Cas:es (),(d(_n(j))

16 [T0"(3t +2X2+3)+3(k .+2vx2kk>+X+k2.]/9 . + (1-v)

2wo x [32 (k2+3,--x2 X)/x + (kl+k 2 )2/(x2+1) ] /12

X[ko+))X2 (k +L 2 )+k 2 X I~ /U)2

51T4l_2 ) l)/6)+ (IV*TT [1/( kl+4)2

1. 3

+/(4, 3 +) 2 + :2( ,+l)(+ 2),+21x: +)/x /o

64 ( I'Y )/
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3. Simply Suported Spherical Shells Cases (e) and (1))

2(2m2-3)+5-(m:-5m2+5) (l-v2)k'-6(2m2 -3)(itV)

00O x [m2 (5-Y)-3(3-v)] kmjA

1(M 3m+7 3)2 (3'V) (3M2 -8m +6)
6 2 2 3  2 2

x[m2 (5-))_3(3-v)] k- (1+Y)(2m2 -3)[M2 (7-v)- 4 m2 (5-')

+6(3-v)] k mnA/(.O

4(rn47ni:'+266 M2 -35m +)k) (1-V2)- '~(l+v)(3m:'-8m +6)2. 72 22 2 3 2 *

x [ m 2( -V)-l,rn2 (5-V)+6(3-)) }r(I Alw

c 60 (1V2)(7+V) (5+V)/( 3V2+36V+ll3)

'4. Clamped SDherical Shell Sas (f)-anfd (k))j

2 )1[320+8(7-2))(l+-))k 2]

' -(23-9 V) (I+v)w

m 20 (1-)2)

where A= -120 (3+v) (5+V)/(3v%36)+113)
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V

CONCLUSIONS

The large amplitude vibrations of thin elastic plates and shallow

shells having various boundary conditions and subjected to random

excitation were investigated by using verious approximate techniques.

As a preliminary study, the analysis of the response of thin elastic

plates and shallow shells with damping undergoing moderately large

deflections and subjected to step loading was carried out by the finite-

difference method in Chapter II. The steady state response for each

case was compared with the existing solution obtained by static analysis

to check the accuracy of the approximation. The integration time

increment bringing about numerical stability and convergence of the

solution for a fixed grid spacing was also determined.

In Chapter III a digital simulation technique for representing

a white stationary Gaussian random process was presented. The random

vibrations of thin elastic rectangular plates and circular plates subject

to white random excitation were simulated numerically by two different

methods. The first method consists of three steps: The first step requires

the reduction of the governing partial differential equations to a single-

degree-of-freedom dynamical equation. This was achieved by assuming the

normal deflection to be represented by a product of the generalized

coordinates and a coordinate to simulate the random load numerically by

the procedure described in Chapter III. Then the desired statistical

properties were computed by numerically integrating the dynamical equation

by the Runge-Kutta method using the simulated random load as an input.
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The second method is to integrate the governing equation of motion and

the compatibility equation numerically by the finite-difference methods

described in Chapter II again employing the simulated random load as

an input. In the second numerical simulation method the total response

may contain the response associated with higher modes, however, this method

requires much more computing time than the first technique. To compare

the results obtained by the two numerical simulation methods, the mean-

square response of deflection was determined by both the equivalent

linearization technique and by the Fokker-Planck approach. For the cases

of rectangular plates and circular plates, the mean-square response of

the nonlinear system was found to depart more from the linear response

for simply supported plates than for clamped ones. The solutions obtained

by the first numerical simulation method were reasonably close to those

obtained by the equivalent linearization technique and by the Fokker-Planck

approach. However, the second numerical simulation method gave rather

poor solutions because of the truncation error and the propagation error

involved in the integration process. It can be concluded that considering

the accuracy of the solution and the computing time, the second numerical

simulation method is not suitable for the simulation of random vibrations

of plates unless a much more efficient method for solving the governing

partial differential equations is used.

In the last section of Chapter IV, the stationary response of shallow

shells to white random excitation was obtained by both the first numerical

simulation method and the Fokker-Planck approach, within the framework

of a single mode approximation.
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NOMENCLATURE

a, b = dimension of plate or shell

[Ak], [Bk] = square matrices

[Ak], [E ] = square matrices

[Ck], [Dk]  = square matrices

c*, c = viscous damping and dimensionless viscous
damping, respectively

D = flexural rigidity of plate or shell

E = Young's modulus

F*, F = Airy stress function and dimensionless Airy
stress function

h = thickness of plate or shell

{F}, {G} = column matrices

{L}, {K} = column matrices

kx, ky9 k* = curvatures of shell

ki, k2, k = dimensionless curvatures of shell

Ko = 12(1-v 2)

Mx, My = bending moments

Mr, M9  = bending moments

M = number of interior points plus boundary
point in E direction

N = number of interior points plus boundary point
in n direction

Pk k = points at time level Tk

Q = amplitude of lateral load

q*, q = lateral load and dimensionless load, respectively
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r = coordinate

r = ratio Ac/An

R = base radius of spherical shell

R(T) = autocorrelation function

s = dimensionless coordinate

AS = spacing dimension

t = time

u(t) = unit step function

u*, v* = displacements in x and y directions, respectively

u, v = dimensionless displacements in and n directions,
respectively

U = column matrix whose elements are W and V

w*, w = normal deflection and dimensionless normal
deflection, respectively

W = function defined by eq. (2-19)

V = function defined by eq. (2-20)

V = Poisson's ratio (take v = 0.3)

T= dimensionless time

p = mass density of the shell

x= aspect ratio a/b

AF, An = spacing dimensions

AT = time increment

* , a*, T* = membrane stresses in the middle surfacex y xy

al, 02) T12 = dimensionless membrane in the middle surface

a*, 0* = membrane stresses in the middle surface

as' 16 = dimensionless membrane stresses
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Bk = independent random number

cI, C2 , c3  = constants

D (z) = parabolic cylinder function

e = difference between a nonlinear system and its
equivalent linear system

E[ ] = expectation operator

Go  = power spectral density of the load

f(t) = generalized coordinate

Ah = basic time increment

P(Yl' Y2) = a joint probability density for y, and Y2

yl' Y2  = dynamical variables

Vk = a white Gaussian number

as, YO WO = constants

= fraction of critical damping

W= frequency
2

Woe = equivalent linear stiffness

AT = integration time increment
2
a 2 = variance of the deflection
2

af = variance of the generalized coordinate f
2

afo = variance of f in a linear system

p( ,n), (s) = coordinate functions
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Figure 2 -13 Geometry of Shell

1A*\

Figure 2-2: Gcomnotry of Shallow; Spherical Shell
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APPENDIX 80

The Compatibility Equation at the Center of the Shell s=O

The compatibility equation in dimensionless form is

4 F .3 F 2 + FaF w. aw aw w 2

a54r + 2a r 3 3 -1i - k (- +
s as S s S as as sas sas as

(A-1)

At s=O,

aw = 0 (A-2)
as

Therefore, using L'Hospital's rule,
2

aw a2w (A-3)sl*6m Sas as- as
The right hand side of eq.(A-l) becomes

22 2R.H.S. - -2k (A-4)
as as

which is bounded at s=O. Expanding F into a Taylor series at s=O, we have

F =a 0 + a1s + a2s 2 +...+ ansn (A-5)

where

a0 = Fs= 0

a, = (aF/as)s= 0

........... (

an = 1,(anF/asn)

Substituting eq.(A-5) into the left hand side of eq. (A-1), v4F is expressed as

v4 F = als-3 + 9a3s- I + 64a4 + 165a 5 s + ... (A-7)

Since the right hand side of eq.(A-l) is bounded at s=O, the left hand side

must be bounded. From eq.(A-7) we must have

a1 = a3 =0 (A-8)

Therefore,

limV4 F : 64a4 = -8 aF)
s 0 as s=O (A-9)

The compatibility equation at s=O is expressed as

8 a4F a 2w (A-10)- ) 2k( )(as4 asa



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R & D
$ecrtt ¢l|eilc ton .. .. ot ttl I bo ao h. trncf arnd irldvi,ifJti! tinnottItiot, ...... n*(f bt" tmeere,d2 101011tWhe r ,S U iTover-Ill 14,,11ne l Fi O IN cln. SihlP

-. ORIGINATGl 70C8T1IV!L72aW1PR 
SEUITY CLASSIFICATIuONot

UNIVERSITY OF MASSACHUSETTS LIUNCLA SSIFIED

SCHOOL OF ENGINEERING, DEPT. OF CIVIL ENGINEERING 717 GR.OUP

AMHERST, MASSACHUSETTS 01002

3 3. REPORT TITLE

RANDOM VIBRATION OF THIN ELASTIC PLATES AND SHALLOW SHELLS
:-

4. DESCRIPTIVE NOTES (Type ot report and incluslve date&)

Scientific Interim
S. AUTHOR(S) (First name, middle initial, laat name)

HIDEKICHI KANEMATSU WILLIAM A NASH

6. REPORT OTE 
7a. TOTAL NO. OF PAGS 7b. NO. OF REFS

July 1971 90 29

On. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBEHIS)

AFOSR-1527-68 TECHNICAL REPORT NO. 1
b. PROJECT NO.

9782-01 9b. OTHER REPORT NO(S) (Any other numbers that may be ass igned

c61102F this report)

681307 AFOSR-TR-71 -1860
d.

10. DISTRIBUTION STATEMENT

Approved for release; distribution is unlimited

I . SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

AF Office of Scientific Research (NAM)

TECH, OTHER 1400 Wilson Boulevard

Arlington, Virginia 22209

13. ABSTRACT

The large amplitude vibrations of thin elastic plates and shallow shells having

boundary conditions and subjected to random excitation are investigated 
by using

various approximate techniques. The random vibrations of rectangular plates and

circular plates subjected to white random excitation are simulated 
numerically by

two different methods. The first method is that the governing equations are reduced

to a single-degree-of-freedom dynamical system and the reduced equation 
is then

integrated numerically by the Runge-Kutta method employing the simulated 
approximate

white noise as an input. The second method consists in integrating 
the equation of

motion and the compatibility equation numerically by a finite-difference 
method

employing the simulated approximate white noise as an input. To compare the results

obtained by the simulation methods with those by other methods, the single-degree-of-

freedom system equation is solved exactly using the Fokker-Planck equation, 
and

solved approximately by the equivalent linearization technique. Also-presented is

the response analysis of shallow shells to white noise by (1) numerical simulation

using the single-degree-of-greedom equation and (2) the Fodder-Planck 
equation. It

has been shown that the solutions by the numerical simulation are 
close to those

obtained by the equivalent linearization technique and the Fokker-Planck 
approach

while the second numerical simulation gives rather poor solutions.

DD, Fo 1 4 7 3 UNCLASSIFIED



UNCLASSIFIED
Security Classification

LINK A LINK % LINK C

KEY WORDS ROLE WT ROLE WT ROLE WT

RANDOM VIBRATIONS

EHIN ELASTIC PLATES

SHALLOW SHELLS

RANDOM VIBRATIONS OF PLATES AND SHELLS

TECHNIQUES IN SOLVING RANDOM VIBRATION PROBLEMS

a

1IN(T ~


